
Reinforcement Learning for Run-Time Performance Management

Gabriele Russo Russo
University of Rome Tor Vergata, Italy

March–April 2024

Reference Book

Reinforcement Learning: An IntroductionRichard S. Sutton and Andrew G. Barto
http://incompleteideas.net/book/the-book.html

2

http://incompleteideas.net/book/the-book.html

Info

Gabriele Russo RussoResearch Fellow (RTDa) at University of Rome Tor Vergata
Main research interests:
▶ Cloud & Edge Computing
▶ Run-time Performance Management of Distributed Applications
▶ Serverless Computing Systems

3

Info (2)

Course composed of 5 lectures:
▶ Mon, March 25 (15:00-17:00)
▶ Mon, April 8 (15:00-17:00)
▶ Mon, April 15 (15:00-17:00)
▶ Mon, April 22 (15:00-17:00)
▶ Mon, April 29 (15:00-17:00)

Slides will be available after the lectures on my website
Q&A: interrupt me at any time for questions!

4

Agenda

▶ Run-time performance management
▶ Why?
▶ Examples
▶ Key challenges

▶ Introduction to Reinforcement Learning
▶ Markov Decision Processes
▶ Tabular RL
▶ Deep RL
▶ Policy methods

5

Scope

Run-time Performance Management
Performance of . . . ???

6

Scenario

Distributed systems and applications in heterogeneous computing environmentswith Quality-of-Service requirements

e.g., microservice-based apps, data processing pipelines
7

Scenario (2)

Distributed systems and applications in heterogeneous computing environmentswith Quality-of-Service requirements
▶ This is the scenario I will mostly refer to
▶ But the techniques we discuss are not specific to this class of systems!

8

Performance Management

▶ Almost every computing/network system is expected to guarantee a desiredlevel of performance
▶ a desired Quality-of-Service level, in general

▶ Requirements impact system design, implementation, deployment, . . .
▶ e.g., architectural choices oriented by performance requirements
▶ e.g., capacity planning for system deployment

▶ A lot of work already done before the system is “on”
▶ More challenges to come over time!

9

Uncertainty

▶ We would like systems to consistently deliver the expected level ofperformance during their operation
▶ However, designing and developing systems to meet this goal is very difficult
▶ A fundamental challenge ahead: uncertainty
▶ (Partial or complete) lack of knowledge regarding elements of the system andthe environment at design time
▶ Unpredictable situations (both internal to the system and external) which thesystem needs to deal with at run-time

10

Uncertainty in Modern Computing Environments
▶ Working conditions likely changing over time

▶ Workloads
▶ Network conditions (e.g., due to congestion)
▶ Performance of (virtualized) multi-tenant computing resources
▶ Security attacks
▶ Variable monetary costs for on-demand resources
▶ Intermittent energy supplies (e.g., solar power)
▶ User mobility

▶ Black-box specifications of applications
▶ Heterogeneous computing and network resources
▶ Humans in the loop
▶ How to develop automated performance management solutions to cope withuncertainty?

11

Example: Workload Variability
Wikipedia page views at beginning of 2016

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

 2.5x10
7

 3x10
7

 3.5x10
7

 1 2 3 4 5 6 7 8 9 10

H
o
u
rl
y
 P

a
g
e
 V

ie
w

s

Day 12

Example: Workload Variability (2)
Tweets about “COVID” at beginning of 2020

0

50

100

150

200

250

20 25 30 35 40 45 50

T
w

e
e
ts

/s
e
c

Day 13

Example: Cloud Performance Variability

Throughput of Amazon S3 (measurements from 2009)

Iosup et al., “On the performance variability of production cloud services” (2011):
https://ieeexplore.ieee.org/abstract/document/8102951

14

https://ieeexplore.ieee.org/abstract/document/8102951

Run-Time Adaptation

▶ How can computing systems deal with changes at run-time?
▶ Need to adapt to changing working conditions

▶ Migrating components
▶ Provisioning more/less resources
▶ . . .

15

Self-Adaptation

▶ Adaptation cannot be driven andcontrolled by humans alone. . .
▶ Scale and complexity of modernapplications and infrastructures
▶ Applications must be able toself-adapt!

Computing Infrastructure Applications

16

Self-Adaptive System

Input Affect

Managed system

Environment
Non-controllable software, hardware, network, physical context, users

Self-adaptive software system

Sensors

Instrumentation to monitor & adapt system

Managing system

Self-adaptive software system

Monitor AdaptMonitor

Performance
goals

Uncertainties

Reference book: “An Introduction to Self-Adaptive Systems” [Weyns 2020]
17

Example: VM Auto-scaling

▶ Consider a simple web application
▶ We can acquire virtual machines (VMs)from a cloud provider to deploy theapplication server(s)
▶ We can elastically acquire/release VMsat any time based on current demand
▶ e.g., “whenever the average CPUutilization of the VMs exceeds 70%,create a new VM”

t

V
M

 I
n

s
ta

n
c
e

s
W

o
r
k

lo
a

d

18

Reference Architecture for Self-Adaptive Systems
▶ Monitor-Analyze-Plan-Execute (MAPE), with shared Knowledge (MAPE-K)

44 Computer

interactions among autonomic elements as it will
from the internal self-management of the individual
autonomic elements—just as the social intelligence
of an ant colony arises largely from the interactions
among individual ants. A distributed, service-ori-
ented infrastructure will support autonomic ele-
ments and their interactions.

As Figure 2 shows, an autonomic element will
typically consist of one or more managed elements
coupled with a single autonomic manager that con-
trols and represents them. The managed element
will essentially be equivalent to what is found in
ordinary nonautonomic systems, although it can
be adapted to enable the autonomic manager to
monitor and control it. The managed element could
be a hardware resource, such as storage, a CPU, or
a printer, or a software resource, such as a data-
base, a directory service, or a large legacy system.

At the highest level, the managed element could
be an e-utility, an application service, or even an
individual business. The autonomic manager dis-
tinguishes the autonomic element from its nonau-
tonomic counterpart. By monitoring the managed
element and its external environment, and con-
structing and executing plans based on an analysis

of this information, the autonomic manager will
relieve humans of the responsibility of directly man-
aging the managed element.

Fully autonomic computing is likely to evolve as
designers gradually add increasingly sophisticated
autonomic managers to existing managed elements.
Ultimately, the distinction between the autonomic
manager and the managed element may become
merely conceptual rather than architectural, or it
may melt away—leaving fully integrated, auto-
nomic elements with well-defined behaviors and
interfaces, but also with few constraints on their
internal structure.

Each autonomic element will be responsible for
managing its own internal state and behavior and
for managing its interactions with an environment
that consists largely of signals and messages from
other elements and the external world. An element’s
internal behavior and its relationships with other
elements will be driven by goals that its designer
has embedded in it, by other elements that have
authority over it, or by subcontracts to peer ele-
ments with its tacit or explicit consent. The element
may require assistance from other elements to
achieve its goals. If so, it will be responsible for
obtaining necessary resources from other elements
and for dealing with exception cases, such as the
failure of a required resource.

Autonomic elements will function at many levels,
from individual computing components such as
disk drives to small-scale computing systems such
as workstations or servers to entire automated
enterprises in the largest autonomic system of all—
the global economy.

At the lower levels, an autonomic element’s range
of internal behaviors and relationships with other
elements, and the set of elements with which it can
interact, may be relatively limited and hard-coded.
Particularly at the level of individual components,
well-established techniques—many of which fall
under the rubric of fault tolerance—have led to the
development of elements that rarely fail, which is
one important aspect of being autonomic. Decades
of developing fault-tolerance techniques have pro-
duced such engineering feats as the IBM zSeries
servers, which have a mean time to failure of sev-
eral decades.

At the higher levels, fixed behaviors, connections,
and relationships will give way to increased
dynamism and flexibility. All these aspects of auto-
nomic elements will be expressed in more high-
level, goal-oriented terms, leaving the elements
themselves with the responsibility for resolving the
details on the fly.

Autonomic manager

Knowledge

Managed element

Analyze Plan

Monitor Execute

Figure 2. Structure of an autonomic element. Elements interact with other
elements and with human programmers via their autonomic managers.

Collects data from
managed element and
execution environment
through sensors

Observes and analyzes
situations to determine
need for adaptation

Plans mitigation actions
to adapt the managed
element when needed

Enacts the plan
adapting the
managed element

Abstraction of shared knowledge regarding relevant
aspects of managed system, environment, and
administrator’s goalsSeminal paper by [Kephart and Chess 2003]

19

MAPE: Monitor & Analyze Phases

▶ Monitor: main design options
▶ When: continuously, on demand
▶ What: resources, workload, application performance, . . .
▶ How: architecture (centralized vs. decentralized), methodology (active vs.passive)
▶ Where to store monitored data and how (e.g., some pre-processing)

▶ Analyze: main design options
▶ When: event- or time-triggered
▶ How: reactive vs. proactive

▶ Reactive: in reaction to events that have already occurred (e.g., scale-out to reactto workload increase)
▶ Proactive: based on prediction so to plan adaptation actions in advance (e.g.,scale-out before workload increase effectively occurs)

20

MAPE: Plan Phase

▶ The most studied MAPE phase
▶ A variety of methodologies

▶ Queueing theory
▶ Optimization theory
▶ Meta-heuristics
▶ Control theory
▶ Machine learning (including reinforcement learning)

21

Architecture of the Managing System
▶ How to design the control architecture for distributed applications?
▶ First idea: Centralized MAPE

▶ All MAPE components in the same node
▶ Global view of the system ✓
▶ Lack of scalability and resiliency X

22

Architecture of the Managing System

▶ Alternative approach: decentralized MAPE
▶ Several patterns to decentralize and distribute MAPE phases
▶ e.g., master-worker, fully decentralized, and hierarchical [Weyns et al. 2013]
▶ No clear winner, depending on system, environment and application featuresand requirements

Master-worker Fully decentralized (e.g., coordinated) Hierarchical

23

Decentralized MAPE: Master-Worker

▶ Decentralize M and E on workers, keep A and P centralized on master
▶ Global view on master ✓
▶ Communication overhead, bottleneck risk and single point of failure onmaster X

24

Decentralized MAPE: Fully Decentralized

▶ Multiple control loops, each one in charge of some part of the controlledsystem, possibly coordinated through interaction (or no interaction at all)
▶ Cloud/edge applications: distinct control loop per application component
▶ Improved scalability ✓
▶ More difficult to take joint adaptation decisions X

25

Decentralized MAPE: Hierarchical

▶ Multiple MAPE loops, which can operate at different time scales and withseparation of concerns
▶ Top-level MAPE can achieve global goals ✓
▶ Non-trivial to identify multiple levels of control X
▶ e.g., for Cloud/Edge applications:

▶ Top-level MAPE: entire application
▶ Bottom-level MAPE: application component

26

Introduction to Reinforcement Learning

Planning Adaptation Actions

▶ We focus on the Analyze and Plan phases of the MAPE loop
▶ How to identify and plan the most suitable adaptation actions?

28

Example: Auto-scaling

▶ Automated provisioning ofVMs/containers/threads at run-time
▶ Conflicting performance and cost indices:

▶ Performance (e.g., response time)
▶ Monetary cost of allocated resources
▶ Reconfiguration overhead

▶ Traditional solution: threshold-based policies

29

Threshold-based Policies

▶ Resource allocation varies according to a set of rules
▶ Rule = condition + action
▶ Conditions defined in terms of thresholds
▶ Model-free approach

if x1 > H1 and/or x2 > H2 and/or ... for DH secondsscale-out(N)if x1 < L1 and/or x2 < L2 and/or ... for DL secondsscale-in(N)

30

Threshold-based Policies (2)

▶ Conditions may involve one or more metrics
▶ e.g., CPU utilization, used memory

▶ For each metric, multiple conditions (hence, thresholds) can be defined
▶ Usually upper (or, high) and lower (or, low) thresholds are used

▶ e.g., for CPU utilization, upper threshold 75% and lower 20%
▶ Conditions may also require thresholds to be exceeded for a certain amountof time before triggering an action

31

Example of Rules

▶ If CPU utilization > 70% for at least 1 minute, add one VM
▶ If CPU utilization < 30% for at least 5 minutes, terminate one VM
▶ If avg. response time > 100ms for at least 30s, increase CPU frequency by10%

32

Issues with Thresholds

▶ Threshold-based policies are easy to implement and execute
▶ But defining suitable rules is not trivial!
▶ Which metrics? System vs application-oriented

▶ System metrics may work across different apps
▶ Application metrics directly mapped onto QoS requirements

▶ Which thresholds? Tuning required!

33

Issues with Thresholds: Oscillation

▶ If thresholds are too close, frequent oscillations may occur
▶ Oscillations negatively impact performance

▶ System oscillates between under- and over-provisioning
▶ Scaling may introduce additional overhead too

▶ Possible workaround: cooldown (or, calm) period
▶ Auto-scaler inhibited for a short period after every scaling action

34

Issues with Thresholds: Bursts

▶ Scaling conditions are usually evaluated over short-medium time periods (e.g.,seconds, minutes)
▶ Not all workloads can be characterized looking at average metrics over suchtime windows
▶ These workloads lead to similar average utilization over 1-minute windows,but they are profoundly different due to bursts [Russo Russo et al. 2021]

 0

 150

 300

 450

 600

 0 5 10 15 20 25 30

A
rr

iv
a
l
R

a
te

 (
tu

p
le

/s
)

Time (min)

NYC Taxi

 0

 150

 300

 450

 600

 0 5 10 15 20 25 30

A
rr

iv
a
l
R

a
te

 (
tu

p
le

/s
)

Time (min)

Live Maps Back End

35

Example: Edge-Cloud Computation Offloading

▶ Serverless functions invoked on Edge nodes
▶ Nodes can offload execution on neighboringnodes or to the Cloud
▶ Must guarantee maximum response time forfunctions
▶ Different resource cost for execution
▶ Traditional approach: greedy heuristics Edge Zone

Cloud

Invoke (FuncX,
Params: { ... },

QoS Class: Y}

Edge Zone

36

Reinforcement Learning

▶ Supervised learning
▶ Unsupervised learning
▶ Reinforcement learning

▶ Goal-directed learning
▶ Learning from interaction with an environment, rather than from examples

▶ Learning from interaction is probably the first idea to occur when thinking tothe nature of learning

37

Reinforcement Learning: Overview

Environment

ActionsState

Reward

RL agent

▶ Sequential decision-making
▶ Agent interacts with an environment

▶ Agent perceives the state of the environment
▶ Agent performs actions

▶ Feedback in the form of reward (and new states)
▶ Goal: maximizing cumulated reward over the long run

38

Reinforcement Learning: Key Ideas

▶ The learner is not told which actions to take (or which actions are the best)
▶ The agent must discover which actions yield the most reward by trying them(trial-and-error)
▶ Often, actions may affect not only the immediate reward but also the nextsituation and, through that, all subsequent rewards (delayed rewards)
▶ These two characteristics are the most important distinguishing features of RL

39

A Bit of History

▶ Modern RL emerged around 1980’s as two research trends intertwined
▶ Learning from trial and error (originated in the psychology of animal learning)
▶ Optimal control of stochastic systems (usually through dynamic programming)

▶ Consistent advancements through 80’s and 90’s
▶ New wave of popularity (and many new applications) with deep RL, after 2018

40

Example: Tic-Tac-Toe

▶ State: representation of the board (3x3 matrix)
▶ Actions: available cells to mark
▶ Reward: 1 for a winning move, 0 otherwise

41

Example: AlphaZero by DeepMind

▶ Software able to play Go, Chess and Shogi
▶ Board games with huge number of legal positions (i.e.,state space)
▶ Number of legal board positions in Go approximately

2× 10170, far greater than the number of atoms in theobservable universe
▶ Trained via self-play and advanced deep RL techniques
▶ Superhuman level of play with 24-hour training
▶ First presented in 2017; in 2019 MuZero, generalization to play Atari gamesand other board games without prior rule knowledge

Paper: https://arxiv.org/abs/1712.01815

42

https://arxiv.org/abs/1712.01815

Example: AlphaDev by DeepMind

▶ Announced in 20231
▶ RL used to develop new C++ sorting algorithm, now accepted in the standardlibrary
▶ 70% faster on short sequences (2-3 items), 1.7% faster on long sequences
▶ State: instructions generated so far and state of the CPU
▶ Actions: assembly instructions to add
▶ Reward: based on sorting correctness and efficiency

1https://www.deepmind.com/blog/alphadev-discovers-faster-sorting-algorithms
43

https://www.deepmind.com/blog/alphadev-discovers-faster-sorting-algorithms

Example: deep RL agent playing Breakout

https://www.youtube.com/watch?v=TmPfTpjtdgg

44

https://www.youtube.com/watch?v=TmPfTpjtdgg

Other Examples

▶ Autonomous vehicles
▶ Robot control
▶ Trading
▶ Autonomous network and computer systems
▶ Videogames
▶ . . .

45

Reinforcement Learning

Environment

ActionsState

Reward

RL agent

▶ Agent, environment, actions, state, rewards, . . .
▶ Modeling depends on the specific task

▶ e.g., autonomous car uses different state information compared to chess player
▶ The problem tackled by RL is formally described as a Markov Decision Process(MDP)
▶ A mathematical framework to model sequential decision making, in situationswhere outcomes are partly random

46

Markov Decision Process (MDP)

▶ Extension of discrete-time Markov chains
▶ “A stochastic model describing a sequence of possible events, occurring atdiscrete time steps, in which the probability of each event depends only on thestate attained in the previous event.”

▶ At each time step t , the process is in some state st
▶ The agent chooses an action at among those available in state st

▶ e.g., robot observes current position and decides direction to move; somedirections might be blocked by obstacles

47

Markov Decision Process (2)

▶ Following at , the process moves to (random) state st+1
▶ e.g., autonomous drone chooses an action to reduce altitude; actual outcomemay depend on (unpredictable) wind speed

▶ Agent receives a reward rt (or, equivalently, pays a cost)
▶ e.g., robot may get a reward for reaching its final destination
▶ e.g., chess player rewarded at the end of a match

48

Example

49

Markov Decision Process (3)

What defines an MDP?
▶ S: a (finite) set of states
▶ A: a (finite) set of actions
▶ p: state transition probabilities

p(s ′|s, a) = P[st+1 = s ′|st = s, at = a]

▶ r : reward function
1. r(s, a) = E [rt |st = s, at = a]2. r(s, a, s ′) = E [rt |st = s, at = a, st+1 = s ′] −→ r(s, a) =

∑
s′ p(s ′|s, a)r(s, a, s ′)

50

Markov Property

“The future is independent of the past given the present”
Definition
A state st is Markov if and only if

P[st+1|s1, . . . , st] = P[st+1|st]

▶ The state captures all relevant information from the history
▶ i.e., the state is a sufficient statistic of the future

51

Markov Property and MDPs

Within the MDP framework:
Definition

P[st+1, rt |s1, a1, . . . , st , at] = P[st+1, rt |st , at]

▶ The current state and action are a sufficient statistic of the future

52

Modeling the Task

▶ The MDP framework is flexible and can be applied to many different problems
▶ However, identifying a suitable model for the task at hand can be challenging
▶ Which states, actions, rewards?

53

Modeling States, Actions and Rewards

▶ Time steps need not refer to fixed intervals of real time
▶ e.g., arbitrary successive stages of decision making

▶ Actions: low-level controls (e.g., voltages applied to the motors of a robotarm), or high-level decisions (e.g., whether or not to reach a certain location)
▶ Similarly, states can be determined by low-level sensations (e.g., sensorreadings), or they can be high-level and abstract (e.g., symbolic descriptions ofobjects in a room)
▶ Rewards: immediately identifiable (e.g., monetary gain of an automatedtrader), or more abstract (e.g., rewarding a software system for completing ajob within the deadline)

54

Modeling States, Actions and Rewards (2)

▶ When defining an MDP-based model of the task, it is important to avoidviolating the Markov property
Example
(Simplified) self-driving vehicle. State s = (x , y , z) comprises vehicle 3Dcoordinates (assuming constant speed). Only available actions are “turn right“,“turn left”, “go straight“.
Turning right and then left (or left and then right) causes the agent to loose controlof the vehicle. We decide to assign a negative reward when conflicting actions arechosen in consecutive time steps. OK?

55

Modeling the Environment

▶ The boundary between agent and environment is typically not the same asthe physical boundary of a robot’s or animal’s body
▶ Usually, the boundary is drawn closer to the agent than that
▶ Anything that cannot be changed arbitrarily by the agent is considered to beoutside of it and thus part of its environment

56

Objective (informal)

▶ Informally, the goal of the agent is maximizing the amount of reward itreceives
▶ not immediate reward, but cumulative reward in the long run

▶ The idea of using a reward signal to formalize the idea of a goal is adistinguishing feature of RL

57

Objective: Episodic Tasks

▶ Let’s consider an episodic task, where the agent-environment interactionnaturally terminates at some final time step T
▶ T is a random variable
▶ e.g., the end of a chess match
▶ e.g., the time a robot reaches its destination or runs out of battery

▶ Final state sT is called terminal state
▶ At time t , we aim to maximize the expected return Gt

Gt = rt + rt+1 + . . . + rT

58

Objective: Continuing Tasks

▶ In many cases the agent–environment interaction does not break naturallyinto identifiable episodes, but goes on continually without limit
▶ e.g., a robot with a long life span
▶ e.g., an agent managing VMs in a data center
▶ e.g., the control system of RL-based traffic lights

▶ We could still consider the expected return, with T =∞
▶ But we could easily get infinite returns!

59

Objective: Continuing Tasks (2)

▶ In this scenario, the agent maximizes the expected discounted return
▶ We introduce a discount factor γ ∈ [0, 1]

▶ γ weights future rewards
Gt = Rt + γRt+1 + . . . =

∞∑
k=0

γkRt+k

▶ γ = 0: a myopic agent
▶ γ = 1: no discounting
▶ Common values are 0.9, 0.99

60

Unified Notation

▶ We adopt a unified notation to cope with both episodic and continuing tasks
▶ the unified notation is basically the one used for continuing tasks
▶ 2 issues to fix for episodic tasks

▶ For episodic tasks, we should refer to state “at time i of episode j” si ,j
▶ In practice, we are (almost) never interested in distinguishing betweenepisodes, so we simply write si

▶ we either refer to a single episode or discuss things valid for any episode
▶ The return in episodic tasks is defined in terms of a final time step T
▶ We can assume that final states in episodic tasks are absorbing states (notransitions to other states) that do not generate any reward
▶ Therefore, the objective can be expressed as a (discounted) infinite sum

61

Reward vs Cost

▶ We can either maximimize the expected reward or minimize the expected cost
Gt = Ct + γCt+1 + . . . =

∞∑
k=0

γkCt+k

▶ The two formulations are equivalent;
▶ You can easily switch between them by setting

r(s, a) = −c(s, a)
▶ In the following, we will often refer to costs; keep in mind this equivalence

62

Policy

Definition
A policy π is a distribution over actions for every state s

π(a|s) = P(At = a|St = s)

▶ A policy fully defines agent’s behavior
▶ MDP policies depend on the current state only
▶ RL defines how policies change based on experience
▶ Special case: deterministic policy

π : S → A

63

Example: Deterministic Policy

State Action
s1 a1
s2 a1
s3 a2
s4 a1

64

Example: Cloud Auto-scaling

▶ We periodically make a decision about scaling in/out an app component (athread, a VM, a container, . . .)
▶ We are concerned with 3 objectives:

▶ Monetary resource cost (or, resource usage in general)
▶ Performance requirements (e.g., max response time)
▶ Scaling overhead

65

Auto-scaling: MDP formulation

Running

Replicas

Arrival

Rate

▶ State at time slot i : si = (ki , λi)
▶ ki component parallelism
▶ λi avg. arrival rate (of requests, jobs, data, . . .)

▶ Action at time slot i : ai ∈ {0, +1,−1}
66

MDPModel: Transition Probabilities
▶ State of the system s = (k , λ)

▶ 1 ≤ k ≤ Kmax Component parallelism
▶ λ avg. input rate

▶ λ is discretized , i.e., λi ∈ {0, ∆λ, 2∆λ, (L− 1)∆λ}
▶ ∆λ quantization step size, L number of discrete values

▶ Available actions A = {−1, 0, +1}
▶ Transition probabilities p(s ′|s, a) = p ((k ′, λ′)|(k , λ), a)

p(s ′|s, a) = P[st+1 = (k ′, λ′)|st = (k , λ), at = a] =

=
{

P[λt+1 = λ′|λt = λ] k ′ = k + a
0 otherwise =

= 1{k′=k+a}P[λt+1 = λ′|λt = λ]
67

MDPModel: Cost Function

c(s, a, s ′) = wres
k + a
K max + wperf 1{R(s,a,s′)>Rmax } + wrcf 1{a ̸=0}

Resource Cost Performance Reconfig.
▶ wres + wperf + wrcf = 1, wx ≥ 0, x ∈ {res, perf , rcf }
▶ R(s, a, s ′): performance index, e.g, response time
▶ Rmax : reference performance value
▶ We want to minimize ∞∑

t=0
γtc(st , at , st+1), γ ∈ [0, 1)

68

Auto-Scaling: Trading-off Objectives
wperf =0.6, wres = wrcf =0.2

 0

 100

 200

 300

 400

 500

 600

 700
Input Rate

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Parallelism

 10 11 12 13 14 15 16 17 18

Simulated Steps (x 1,000)

SLO Violations

 10 11 12 13 14 15 16 17 18

Simulated Steps (x 1,000)

Reconfigurations

wres=0.6, wperf = wrcf =0.2

 0

 100

 200

 300

 400

 500

 600

 700
Input Rate

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Parallelism

 10 11 12 13 14 15 16 17 18

Simulated Steps (x 1,000)

SLO Violations

 10 11 12 13 14 15 16 17 18

Simulated Steps (x 1,000)

Reconfigurations

69

Value Function

Informally, a value function is an estimate of future rewards
▶ can be used to evaluate how good/bad states and/or actions are
▶ and therefore to select actions e.g. in a greedy way

State/Action a1 a2 a3
s1 10 5 13
s2 8 6 14
s3 6 9 6
s4 5 8 6
s5 4 8 7
s6 10 5 9
s7 20 9 15

s π(s)
s1 a3
s2 a3
s3 a2
s4 a2
s5 a2
s6 a1
s7 a1

70

Value Function (2)

▶ The state-value function of state s under policy π, vπ(s) is the expected returnstarting in s and following π thereafter
vπ(s) = Eπ [Gt |St = s] ∀s ∈ S

▶ where Eπ [·] denotes the expected value of a random variable given that theagent follows policy π

71

Action Value Function

▶ The action value function of state s and action a under policy π, Qπ(s, a) is theexpected return starting in s , choosing action a and following π thereafter
Qπ(s, a) = Eπ[Gt |St = s, At = a] ∀s ∈ S,∀a ∈ A(s)

▶ a.k.a. Q function

72

Monte Carlo Methods

▶ Simple approach to estimate the value functions from experience
▶ Monte Carlo methods: averaging over many random samples of actual returns
▶ Agent follows policy π and maintains an average, for each state encountered,of the actual returns that have followed that state
▶ Average will converge to the state value vπ(s), as the number of times thatstate is encountered approaches infinity
▶ Of course, if there are very many states, then it may not be practical to keepseparate averages for each state individually

▶ function approximation might be used

73

Bellman Equation
The action value function can be decomposed into two parts:
▶ immediate reward
▶ discounted rewards from successor state St+1

Qπ(s, a) = Eπ[Gt |St = s, At = a]
= Eπ[Rt + γRt+1 + γ2Rt+2 . . . |St = s, At = a]
= Eπ[Rt + γ (Rt+1 + γRt+2 . . .) |St = s, At = a]
= Eπ[Rt + γGt+1|St = s, At = a]
= r(s, a) + γEπ[Gt+1|St = s, At = a]

Bellman equation:
Qπ(s, a) = r(s, a) + γ

∑
s′∈S

p(s ′|s, a)Qπ(s ′, π(s ′))
74

Bellman Equation (2)
The value function can be similarly decomposed into two parts:
▶ immediate reward rt

▶ discounted reward from successor state V (St+1)

Vπ(s) = Eπ[Gt |St = s]
= Eπ[Rt + γRt+1 + γ2Rt+2 . . . |St = s]
= Eπ[Rt + γ (Rt+1 + γRt+2 . . .) |St = s]
= Eπ[Rt + γGt+1|St = s]

Bellman equation:
Vπ(s) = r(s, π(s)) + γ

∑
s′

p(s ′|s, π(s))Vπ(s ′)

75

Bellman Equation (3)

▶ If dealing with non-deterministic policies . . .
Vπ(s) = r(s, π(s)) + γ

∑
s′

p(s ′|s, π(s))Vπ(s ′)

▶ the equation becomes:
Vπ(s) =

∑
a

π(a|s)r(s, a) + γ
∑
s′

p(s ′|s, a)Vπ(s ′)

76

Optimal Policies

▶ Solving a RL task means, roughly, finding a policy that achieves a lot of rewardover the long run
▶ For finite MDPs, we can precisely define an optimal policy
▶ Value functions define a partial ordering over policies
▶ A policy π is defined to be better than or equal to a policy π′ if its expectedreturn is greater than or equal to that of π′ for all states

π ≥ π′ iff vπ(s) ≥ vπ′(s)∀s ∈ S

77

Optimal Policies (2)

▶ There is always at least one policy that is better than or equal to all otherpolicies (optimal policy)
▶ There may be more than one, and we denote all the optimal policies by π∗

▶ They share the same state-value function, called the optimal state-valuefunction, denoted v ∗, and defined as
v ∗(s) = max

π
vπ(s)

78

Optimal Value Function

Optimal state value function
V ∗(s) is the minimum value function over all policies

v ∗(s) = max
π

vπ(s)

Optimal action value function
Q∗(s; a) is the maximum action-value function over all policies

Q∗(s, a) = max
π

Qπ(s, a)

79

Bellman Optimality Equations

Vπ(s) = r(s, π(s)) + γ
∑
s′

p(s ′|s, π(s))Vπ(s ′)

▶ The Bellman Equation holds for the optimal value function as well
▶ We can drop the reference to any specific policy and obtain the BellmanOptimality Equation

V ∗(s) = max
a

[
r(s, a) + γ

∑
s′

p(s ′|s, a)V ∗(s ′)
]

V ∗(s) = max
a

Q∗(s, a)

80

Bellman Optimality Equations (2)

For the action value function:
Q∗(s, a) = r(s, a) + γ

∑
s′∈S

p(s ′|s, a) max
a′

Q∗(s ′, a′)

81

Optimal Policy

Given Q∗(s, a) the optimal action when the system is in state s is:
π∗(s) = a∗(s) = arg max

a∈A
Q∗(s, a)

State a1 a2 a3
s1 10 5 3
s2 8 6 4
s3 6 5 6
s4 5 4 6
s5 4 8 7
s6 1 5 9
s7 0 9 15

=⇒

π∗(s)
a1
a1
a1
a3
a2
a3
a3

82

How to compute V ∗?

▶ If we know the optimal value function, we have an optimal policy!
▶ But. . . how to compute the optimal value function??
▶ We already mentioned Monte Carlo methods
▶ An alternative approach relies on dynamic programming

83

Value Iteration

Bellman Equation
Q∗(s, a) = r(s, a) + γ

∑
s′∈S

p(s ′|s, a) max
a′

Q∗(s ′, a′)

▶ Suppose we know the solution to subproblems Q∗(s ′, a′)
▶ Q∗(s, a) can be computed by one-step lookahead

Q∗(s, a)← r(s, a) + γ
∑
s′∈S

p(s ′|s, a) max
a′

Q∗(s ′, a′)

▶ The idea is to apply these updates iteratively
▶ Proven to converge to Q∗ for any finite MDP (see, Sutton-Barto, Ch. 4)

84

Value Iteration: Algorithm

Value Iteration
1 i ← 0
2 Qi(s, a)← 0, ∀s ∈ S, ∀a ∈ A(s)
3 repeat
4 forall s ∈ S do
5 forall a ∈ A(s) do
6 Qi+1(s, a)← r(s, a) + γ

∑
s′∈S p(s ′|s, a) maxa′∈A(s′) Qi(s ′, a′)

7 end
8 end
9 i ← i + 1

10 until maxs,a |Qi(s, a)− Qi−1(s, a)| < ϵ
11 π∗(s) = arg maxa Qi(s, a), ∀s ∈ S

85

Value Iteration - Alternative Algorithm
1 i ← 0
2 Qi(s, a)← 0, ∀s ∈ S, ∀a ∈ A(s)
3 Vi(s)← 0, ∀s ∈ S
4 repeat
5 forall s ∈ S do
6 forall a ∈ A(s) do
7 Qi+1(s, a)← r(s, a) + γ

∑
s′∈S p(s ′|s, a)Vi(s)

8 end
9 Vi+1(s) = maxa′∈A(s) Qi+1(s, a′)

10 end
11 i ← i + 1
12 until maxs,a |Qi(s, a)− Qi−1(s, a)| < ϵ
13 π∗(s) = arg maxa Qi(s, a), ∀s ∈ S

86

Example: Maze

▶ Consider a S × S grid
▶ Episodes start with agent randomly locatedin a cell in the first column
▶ Goal: reaching target cell (1, S)
▶ Some cells are blocked
▶ Some cells are slippery: when entering, theagent has a probablity pslip of slipping onecell ahead along the current direction

87

Example: Maze (2)

▶ State: s = (x , y)
▶ Actions: a ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)}
▶ Reward:

▶ 0 for entering the goal cell
▶ -M for exiting the grid or crashing into a blocked cell (M ≫ 1)
▶ -1 otherwise

� maze.py (--agent mdp)

88

Maze: Optimal Policy

0 1 2 3 4

0

1

2

3

4

↓ → → → ↓

↓ ↓ ↑ ↑ ↑

↓ ↓ ↓ ↑ ↑

→ → → → ↑

↑ ↑ ↑ ↑ ↑

89

Maze: Optimal Value Function

90

MDP Resolution

▶ We can use the Value Iteration algorithm to solve the MDP
▶ i.e., finding the optimal policy

▶ Is this enough?
▶ Unfortunately, solving the MDP requires exact and complete knowledge ofthe underlying model

▶ state transition probabilities
▶ reward/cost function

▶ In practice, we don’t have such information!
▶ Moreover, Dynamic programming approaches can become computationallyunfeasible for very large state-action spaces

91

Reinforcement Learning

▶ RL aims to learn the optimal policy through interaction and evaluativefeedback
92

Model-free vs Model-based RL

▶ Model-free RL: no model of the environment is available or used; the optimalpolicy is learned through experience only
▶ Model-based RL: a (possibly partial) model of the environment is available andused to derive the optimal policy

▶ a partial model can boost learning speed
▶ RL may also be used in presence of a complete model instead of VI; e.g., with alarge number of rarely visited states VI would unnecessarily run for a long time!
▶ You may also try to learn the model online and use it to compute a policy

93

Value-based vs Policy-based RL

▶ Value-based RL: aims to learn the optimal value function through experience;the policy is derived from it
▶ Simplest RL algorithms belong to this group

▶ Policy-based RL: aims to directly learn the optimal policy through experience;no explicit computation/learning of the value function
▶ Hybrid approaches: e.g., the Actor-Critic framework

94

Simple Value-based RL Algorithm

A simple RL algorithm
1 t ← 0
2 Initialize Q
3 Loop
4 t ← t + 1
5 EndLoop

95

Q-learning

▶ Proposed by Chris Watkins in early 90’s (Watkins and Dayan 1992)
▶ One of the most known (and simplest) RL algorithms
▶ Proven to converge to the optimal policy under mild assumptions

▶ . . . after n steps, with n→∞, and every state visited an infinite number of times
▶ Very slow to convergence in practice!

96

Q-learning: Action Selection

▶ How to choose an action at every time step?
▶ Exploration vs Exploitation dilemma
▶ Exploitation: using available knowledge to maximize reward

▶ choose the “best” action, i.e., at = arg maxa Q(st , a)
▶ Exploration: discovering more information about the environment

▶ choose other actions to learn more about the environment
Q-learning converges only if all state-action pairs are visited an infinite number oftimes as t →∞
▶ you can’t exploit all the time
▶ you can’t explore all the time

97

ϵ-Greedy Exploration

▶ Popular approach for the exploration-exploitation dilemma
▶ With probability 1− ϵ choose the greedy action a∗ = arg maxa∈A Q(s, a)
▶ With probability ϵ choose an action at random
▶ Improvement: ϵ-greedy with decaying ϵ (similar to decaying learning rate inSGD)

98

Softmax Action Selection

▶ Alternative to the ϵ-greedy strategy
▶ All actions assigned non-zero probability of being chosen
▶ Action a ∈ A is selected with probability

π(a|s) = exp(Q(s, a)/τ)∑
a′∈A exp(Q(s, a′)/τ)

▶ τ is the “temperature”
▶ Small τ leads to greedy behavior
▶ Large τ leads to random action selection
▶ You usually start with a large temperature value and let it decay

99

Q-learning: Updating Q

With known model, we can compute Q iteratively using:
Q(s, a)← r(s, a) + γ

∑
s′∈S

p(s ′|s, a) max
a′

Q(s ′, a′)

Q-learning uses point estimates on experience {st , at , rt , st+1}:
Q(st , at)← Q(st , at) + αt

[
rt + γ max

a′∈A
Q(st+1, a′) − Q(st , at)

]

TargetLearning Rate

100

Q-learning: Algorithm

Q-learning
1 t → 0
2 Initialize Q (e.g., zero-initialized)
3 Loop
4 choose at (e.g., ϵ-greedy or softmax selection)
5 observe next state st+1 and reward rt
6 Q(st , at)← Q(st , at) + αt [rt + γ maxa′∈A Q(st+1, a′)− Q(st , at)]
7 t ← t + 1
8 EndLoop

101

Example: Maze

▶ python maze.py --agent qlearning --episodes N
[-- plot_reward]

� maze.py
� qlearning.ipynb

102

SARSA

▶ Q-learning is an off-policy algorithm
▶ It estimates the return for state-action pairs assuming a greedy policy isfollowed, despite the fact that it’s not following a greedy policy (e.g., ϵ-greedy)

▶ SARSA: on-policy algorithm similar to Q-learning
▶ The same policy is used to choose next action and to update Q

103

SARSA: Algorithm

SARSA
1 t → 0
2 Initialize Q (e.g., zero-initialized)
3 choose at (e.g., ϵ-greedy or softmax selection)
4 Loop
5 observe next state st+1 and reward rt
6 choose at+1 (e.g., ϵ-greedy or softmax selection)
7 Q(st , at)← Q(st , at) + αt [rt + γQ(st+1, at+1)− Q(st , at)]
8 t ← t + 1
9 EndLoop

104

Dealing with Large State Spaces:
Deep RL

Issues with Tabular RL

▶ So far, we have considered tabular representations of the value function
State/Action a1 a2 . . .

s1 Q(s1, a1) Q(s1, a2) . . .
s2 Q(s2, a1) Q(s2, a2)
sn Q(sn, a1) Q(sn, a2) . . .

▶ Not ideal as the state space grows. . .
▶ Memory demand: O(|S||A|)
▶ No generalization
▶ How to handle continuous state spaces?

106

Value Function Approximation

Idea: using a parametric approximation of the value function
Vπ(s) ≈ V̂ (s, w), or
Qπ(s, a) ≈ Q̂(s, a, w)

▶ w ∈ Rd is a vector of parameters
▶ We need to store w instead of the Q table

▶ Reduced memory demand if d < |S|✓
▶ Potential generalization✓

▶ The experience gained in a state used to update w
▶ A single update possibly impacts the value of several states!
▶ Can deal with continuous state spaces✓

107

Value Function Approximation (2)

▶ How to choose a function Q̂?
▶ How to determine the value of w?
▶ We search for a function and a vector w so as to approximate V (or Q) “well”
▶ First of all, what does "well" means?

108

Function Approximation: Objective

▶ A simple and natural choice is to minimize MSE:
J(w) =

∑
s∈S

µ(s)
[
Vπ(s)− V̂ (s, w)

]2
▶ µ(s) ≥ 0 is a distribution over states
▶ µ(s) should reflect the importance or frequency of states

109

Optimizing Parameters

We can compute parameters w through gradient descent

wt+1 = wt −
1
2α∇wJ(wt) =

= wt + α
∑
s∈S

µ(s)
[
Vπ(s)− V̂ (s, w)

]
∇w V̂ (s, w)

Two potential issues:
1. Summation over all states (may be expensive!)
2. We don’t have the true values Vπ(s)!

110

Optimizing Parameters: Issue 1

wt+1 = wt + α
∑
s∈S

µ(s)
[
Vπ(s)− V̂ (s, w)

]
∇w V̂ (s, w)

Gradient computed over all states. . .
Stochastic gradient descentone (or few) samples (st , Vπ(st)) at each step

wt+1 = wt + α
[
Vπ(st)− V̂ (st , w)

]
∇w V̂ (st , w)

111

Optimizing Parameters: Issue 2

wt+1 = wt + α
∑
s∈S

µ(s)
[

Vπ(s) − V̂ (s, w)
]
∇w V̂ (s, w)

How to get exact values?
Stochastic semi-gradient descent:we replace Vπ(st) with a noisy approximation Ut , based on estimated value func.

wt+1 = wt + α
[
Ut − V̂ (st , w)

]
∇w V̂ (st , w)

A possible approach (inspired by Q-learning):
Ut = rt + γV̂ (st+1, wt)

112

Linear Function Approximation

The simplest possible approximation model:
V̂ (s, w) = wT ϕ(s) =

d∑
i=1

wiϕi(s)

Features
ϕ : S → Rd

Weights
w ∈ Rd

Update rule becomes very simple:
∇w V̂ (s, w) = ϕ(s)

wt+1 = wt + α
[
Ut − V̂ (st , wt)

]
ϕ(st)

113

Linear Function Approximation (2)

We have equivalent formulas for Q:
Q̂(s, a, w) = wT ϕ(s, a) =

d∑
i=1

wiϕi(s, a)

Features
ϕ : S ×A → Rd

Weights
w ∈ Rd

∇wQ̂(s, a, w) = ϕ(s, a)

wt+1 = wt + α
[

Ut − Q̂(st , at , wt)
]

ϕ(st , at)

??
114

Q-learning + Linear FA
Recall Q-learning update
Q(st , at)← Q(st , at) + αt [rt + γ maxa′∈A Q(st+1, a′)− Q(st , at)]

1 t → 0
2 Initialize w
3 Loop
4 choose action at
5 gather experience ⟨st , at , rt , st+1⟩
6 Ut ← rt + γ maxa′∈A Q̂(st+1, a′, wt)
7 wt+1 = wt + α

[
Ut − Q̂(st , at , wt)

]
ϕ(st , at)

8 t ← t + 1
9 EndLoop

115

(Linear) FA: Issues

▶ Linear FA+RL successfully applied on some tasks
▶ Nonlinear models (e.g., ANNs) have obtained significant results as well

▶ e.g., TD-Gammon (1992)
▶ Efficacy of these approaches strongly depends on the features in use

▶ how states (and actions) are represented
▶ domain expertise necessary

116

Deep RL

▶ We have seen that the key advancement enabled by DNNs is the ability oflearning the features
▶ Idea: exploiting this ability to learn suitable features for state and actionrepresentation

...

input

layer

hidden

layers

output

layer

activation

function

117

Deep Q Network

▶ First popular application of DNNs within RL in 2013
▶ Mnih et al., “Playing Atari with Deep Reinforcement Learning”

https://www.cs.toronto.edu/%7Evmnih/docs/dqn.pdf
▶ Task: playing Atari 2600 games
▶ Two key innovations:

▶ DNN to approximate Q (Deep Q Network)
▶ Experience Replay buffer

▶ Learning algorithm adapted from Q-learning

118

https://www.cs.toronto.edu/%7Evmnih/docs/dqn.pdf

Example: Atari games

Atari 2600 console (1977–1992)
119

Example: Atari games

Breakout: https://www.youtube.com/watch?v=TmPfTpjtdgg
120

https://www.youtube.com/watch?v=TmPfTpjtdgg

Deep Q Network
▶ Input: state s (possibly preprocessed)
▶ Output: Q̂(s, a), for every action a

121

Training

▶ NN training usually based on (large) training set
▶ collection of examples (xi , yi)

▶ To train a DQN we would need many examples (si , [Q(si , a1) · · ·Q(si , an)]T)

▶ Problem: we don’t have true examples of Q(s, a) to use!
▶ agent only collects immediate rewards on-line

▶ We need to estimate Q on-line based on experience (as usual in RL)

122

Training (2)

Experience Training Sample
⟨st , at , st+1, rt⟩ (st , at)→ rt + γ maxa′ Q̂(st+1, a′, w)
⟨st−1, at−1, st , rt−1⟩ (st−1, at−1)→ rt−1 + γ maxa′ Q̂(st , a′, w)
⟨st−2, at−2, st−1, rt−2⟩ (st−2, at−2)→ rt−2 + γ maxa′ Q̂(st−1, a′, w). . .
▶ Naive idea: pick mini-batches of last b experience tuples and train the NN

▶ i.e., at each iteration, train on most recent experience
▶ sequential observations likely correlated X
▶ less recent experience possibly forgotten X

123

Experience Replay

▶ Smarter approach: experience replay buffer
▶ Circular FIFO buffer with capacity B > b
▶ At each training iteration, b tuples drawn randomly from the buffer
▶ correlation between observations reduced/removed ✓
▶ if B is large, old observations are “seen” more than once ✓

▶ improved data efficiency

124

Deep Q-learning (DQL)

1 Initialize w
2 Initialize empty buffer B
3 i ← 0
4 Loop
5 choose action ai
6 gather experience ⟨si , ai , ri , si+1⟩ and add to B
7 sample minibatch of b ⟨sj , aj , rj , sj+1⟩ tuples from B
8 y (j) ← rj + γ maxa′ Q̂(si+1, a′, w), j = 1, . . . , b
9 L(j) = (y (j) − Q̂(sj , aj , w))2 /* Loss */

10 update w using, e.g., SGD on the minibatch
11 i ← i + 1
12 EndLoop

125

Example: Atari

▶ Frames are 210 × 160 pixel images with a 128 color palette
▶ Input dimensionality reduced via preprocessing

▶ RGB to gray-scale conversion
▶ down-sampling to 110×84
▶ cropped to 84x84 to ease implementation

▶ State comprises last 4 frames
▶ why?

126

Example: Atari

▶ NN input: 84 × 84 × 4 image produced by preprocessing
▶ Conv. layer with 16 8x8 filters with ReLU
▶ Conv. layer with 32 4x4 filters with ReLU
▶ Fully-connected layer with 256 ReLU units
▶ Linear output layer with one unit for each valid action (from 4 to 18 in theconsidered games)
▶ Trained using RMSProp for a total of 50 million frames (around 38 days ofgame experience in total)
▶ Replay memory stores 1 million most recent frames

127

Example: Atari

128

Target Network

▶ DQN may suffer from instability during training, possibly preventing thealgorithm to converge
▶ In traditional NN training, the training targets do not change over time
▶ In DRL, since we don’t have ground-truth Q values, we use the approximated

Q̂ in the update target value:
y (j) ← rj + γ min

a′
Q̂(si+1, a′, w)

▶ but we keep changing w at each iteration
▶ Let’s use a second neural network to stabilize the targets

129

Deep Q-learning with Target Network

1 Initialize w and w− = w
2 Initialize empty buffer B
3 i ← 0
4 Loop
5 choose action ai
6 gather experience ⟨si , ai , ri , si+1⟩ and add to B
7 sample minibatch of b ⟨sj , aj , rj , sj+1⟩ tuples from B
8 y (j) ← rj + γ mina′ Q̂(si+1, a′, w−), j = 1, . . . , b
9 L(j) = (y (j) − Q̂(sj , aj , w))2

10 update w using, e.g., SGD on the minibatch
11 every C steps: w− ← w
12 i ← i + 1
13 EndLoop 130

Remark

▶ DQN can seamlessly work with continuous state spaces
▶ Action space must be finite

131

Example: CartPole with DQN

▶ Environment provided by OpenAI Gym
▶ Large collection of ready-to-use environments

▶ DQN implemented using TF-Agents
▶ RL library part of Tensorflow ecosystem

▶ https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial?hl=en

132

https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial?hl=en

Policy-based RL

▶ So far, we have considered value-based RL algorithms
▶ Learn the value function; get a policy from it

▶ Now we turn our attention to policy-based RL (or, policy gradient methods)
▶ Directly learn a policy
▶ Algorithms may still learn the value function, but it is not used to derive thepolicy

133

Policy Gradient Methods

▶ Algorithms learn a parameterized policy
π(a|s, θ) = P(At = a|St = s, θt = θ)

θ ∈ Rm is the vector of policy parameters
▶ π(a|s, θ) can be any function, as long as it is differentiable w.r.t. parameters θ

Note
To avoid ambiguity, we will keep using w ∈ Rd to denote the vector of parametersused to approximate the value function, if necessary (e.g., V (s, w))

134

Policy Gradient Methods (2)

▶ Suppose that J(θ) is a performance measure of the policy resulting fromparameters θ (the higher the better)
▶ To maximize performance, we can update θ by gradient ascent:

θt+1 = θt + α∇J(θt)

▶ The expression “policy gradient” refers to all the methods based on the ideaintroduced above

135

Policy Approximation: Why?

▶ Often (but not always), the policy is an easier function to approximatecompared to the value function
▶ Policy parameterization lets action probabilities change smoothly as afunction of the learned parameters, while they can change dramatically for asmall change in the action values (if a different action gets the highest value)

▶ stronger convergence guarantees are available
▶ Stochastic policies can be learned
▶ Continuous action spaces are supported

136

Policy Approximation via Action Preferences

▶ Let’s suppose that the action space is discrete (and not too large)
▶ We will discuss later other scenarios

▶ A natural choice for policy approximation is softmax in action preferences:
π(a|s, θ) = eh(s,a,θ)∑

a′ eh(s,a′,θ)

▶ h(s, a, θ) is a parameterized numerical preference value for every state-actionpair

137

Policy Approximation via Action Preferences

▶ Note that we don’t need any specific strategy to determine the preferencevalues h(s, a, θ)
▶ They are just a convenient way to parameterize the policy π(a|s, θ)
▶ For instance, we could use a DNN with a softmax output layer to approximatethe policy

▶ Hidden layers compute the action preferences
▶ Output layer produces the policy probabilities

138

Action Preferences vs. Action Values

▶ Action values Q(s, a) may differ by a small amount
▶ Softmax based on Q may struggle to approach a deterministic policy (unless avery small temperature coefficient is used)

▶ Action preferences instead do not need to convergence to specific values(e.g., the optimal value function), but rather to the best values for the policy tolearn
▶ if a deterministic policy is optimal, preference for the optimal action will be ashigher as possible than the other actions
▶ if a stochastic policy is optimal, more than one action will have a high preferencevalue (e.g., card games with incomplete information) . . .
▶ . . . and we can learn arbitrary probabilities for actions

139

Policy Gradient in Episodic Tasks

▶ Let’s consider an episodic task starting in state s0

▶ In this case, performance of the policy can be evaluated as
J(θ) = Vπθ

(s0)

▶ How to update θ to improve performance?
▶ Performance depends both on (1) action selection and (2) the distribution ofstates occurring in the episode
▶ Both depend on the parameters!
▶ (2) is particularly difficult as it also depends on the environment

140

Policy Gradient Theorem

Policy Gradient Theorem
∇θJ(θ) ∝

∑
s

µ(s)
∑

a
Qπ(s, a)∇θπ(a|s, θ)

▶ Proportionality constant is the average length of an episode
▶ in gradient ascent, constant absorbed by step size α ✓

▶ we don’t need the derivative of µ(s) ✓

141

Policy Gradient Theorem: Proof

To simplify notation, we leave it implicit that π is a function of θ, and that gradients are w.r.t. θ

∇Vπ(s) = ∇
[∑

a
π(a|s)Qπ(s, a)

]
=

=
∑

a
∇[π(a|s)Qπ(s, a)] =

=
∑

a
[∇π(a|s)Qπ(s, a) + π(a|s)∇Qπ(s, a)] =

=
∑

a

∇π(a|s)Qπ(s, a) + π(a|s)∇
∑
s′,r ′

p(s ′, r ′|s, a)(r + Vπ(s ′))
 =

142

Proof (2)

=
∑

a

∇π(a|s)Qπ(s, a) + π(a|s)∇
∑
s′,r ′

p(s ′, r ′|s, a)(r + Vπ(s ′))
 =

1) Reward does not depend on θ (gradient is 0)2)∑s′
∑

r ′ p(s ′, r ′|s, a)Vπ(s ′) =
∑

s′ p(s ′|s, a)Vπ(s ′)

=
∑

a

[
∇π(a|s)Qπ(s, a) + π(a|s)

∑
s′

p(s ′|s, a)∇Vπ(s ′)
]

=

Note: we are computing ∇Vπ(s) and now we have a recursive term ∇Vπ(s ′)! Let’sunroll the recursion. . .
143

Proof (3)

=
∑

a

[
∇π(a|s)Qπ(s, a) + π(a|s)

∑
s′

p(s ′|s, a)·

∑
a′

(
∇π(a′|s ′)Qπ(s ′, a′) + π(a′|s ′)

∑
s′′

p(s ′′|s ′, a′)∇Vπ(s ′′)
)]

=

After repeated unrolling . . .
=
∑
x∈S

∞∑
k=0

P(s → x , k , π)
∑

a
[∇π(a|x)Qπ(x , a)]

where P(s → x , k , π) is the probability of transitioning from s to x in k steps underpolicy π.
144

Proof (4)

We can now write an expression for the gradient of J

∇J(θ) = ∇Vπ(s0) =
∑

s

∞∑
k=0

P(s0 → s, k , π)
∑

a
[∇π(a|s)Qπ(s, a)] =

=
∑

s
η(s)

∑
a

[∇π(a|s)Qπ(s, a)] =

η(s): avg. number of steps spent in s within an episode
=
∑
s′

η(s ′)
∑

s

η(s)∑
s′ η(s ′)

∑
a

[∇π(a|s)Qπ(s, a)] =

145

Proof (5)

=
∑
s′

η(s ′)
∑

s

η(s)∑
s′ η(s ′)

∑
a

[∇π(a|s)Qπ(s, a)] =

=
∑
s′

η(s ′)
∑

s
µ(s)

∑
a

[∇π(a|s)Qπ(s, a)]

∇J(θ) ∝
∑

s
µ(s)

∑
a

[∇π(a|s)Qπ(s, a)]

146

REINFORCE

▶ µ(s) is the on-policy distribution of states under π
▶ if π is followed, states will occur in that proportion

∇θJ(θ) ∝
∑

s
µ(s)

∑
a

Qπ(s, a)∇θπ(a|s, θ) =

= Eπ

[∑
a

Qπ(st , a)∇θπ(a|st , θ)
]

▶ as we did to approximate the value function, we can perform a stochasticgradient ascent on occurring states st

147

REINFORCE (2)
▶ We replaced a sum over states with an expectation under π
▶ We want to do the same with the sum over actions
▶ First, we need to weigh actions by π(a|s, θ)

∇θJ(θ) ∝ Eπ

[∑
a

Qπ(st , a)∇θπ(a|st , θ)
]

=

= Eπ

[∑
a

π(a|st , θ)Qπ(st , a)∇θπ(a|st , θ)
π(a|st , θ)

]
=

= Eπ

[
Qπ(st , at)

∇θπ(at |st , θ)
π(at |st , θ)

]
=

= Eπ

[
Gt
∇θπ(at |st , θ)

π(at |st , θ)

]
148

REINFORCE (3)

∇J(θ) ∝ Eπ

[
Gt
∇θπ(at |st , θ)

π(at |st , θ)

]

▶ We can sample Gt for each time step, and we got an expression proportionalto the gradient
▶ We can use stochastic gradient ascent to update parameters
▶ The resulting algorithm is REINFORCE (1992)

θt+1 ← θt + αGt∇θln π(at |st , θ)

∇θπ(at |st , θ)
π(at |st , θ) = ∇θln π(at |st , θ)

149

REINFORCE: Algorithm

We also include a discount factor γ

1 Initialize θ (e.g., to 0)
2 Loop
3 generate episode s0, a0, r1, s1, . . . , rT following π
4 for t=0,1,. . . ,T do
5 Gt ←

∑T
k=t+1 γk−t−1rk

6 θ ← θ + αγtGt∇θln π(at |st , θ)
7 end
8 EndLoop

150

Policy Gradient: Another Perspective

▶ Consider a NN used for multi-class classification
▶ Softmax final layer outputs a probability yc for all classes c
▶ Gradient of cross-entropy loss used for training

θ ← θ + α∇θ

[∑
c

ȳc ln yc

]

▶ Intuitively, training will increase prob. yc for the class c labeled as correct(ground truth)
▶ likelihood maximization

▶ Replacing classes with “actions”, the NN outputs π(a|s, θ)
▶ REINFORCE update is proportional to ∇θln π(at |st , θ)

▶ without a ground truth, prob. is increased/decreased based on return
151

REINFORCE with Baseline

▶ A slight generalization of REINFORCE involves the use of a baseline b(s)
▶ We compare the value of each action to b(s)
▶ The policy gradient theorem remains true

∇J(θ) ∝
∑

s
µ(s)

∑
a

(Q(s, a)− b(s))∇π(a|s, θ)

▶ Baseline can be useful to reduce the variance of the update and speed learning
θt+1 = θt + α (Gt − b(st))∇ln π(at |st , θ)

152

Actor-Critic

▶ Idea to avoid high variance of returns used by REINFORCE
▶ Using the one-step return Gt:t+1 instead

Gt:t+1 = rt + γV (st+1)

▶ We call critic the role of the value function used in this way
▶ We call the resulting approach actor-critic

θt+1 = θt + α
(
Gt:t+1 − V̂ (st , w)

)
∇ln π(at |st , θ) =

= θt + α
(
rt+1 + γV̂ (st+1, w)− V̂ (st , w)

)
∇ln π(at |st , θ)

153

1 Initialize θ and w (e.g., to 0)
2 Loop
3 Initialize s as first state of the episode
4 I ← 1
5 while s not terminal do
6 choose action a according to π(·|s, θ)
7 observe s ′ and r
8 δ ← r + γV̂ (s ′, w)− V̂ (s, w)
9 w ← w + αwδ∇V̂ (s, w)

10 θ ← θ + Iαθδ∇ln π(a|s, θ)
11 I ← γI
12 s ← s ′

13 end
14 EndLoop

154

The Continuing Case

▶ Policy gradient theorem holds for continuing tasks as well
▶ The performance measure J(θ) must be changed to the average reward
▶ Proof and updated Actor-Critic alg. in Sutton-Barto, 13.6

155

Continuous or Large Action Spaces

▶ Policy gradient methods can be useful in presence of very large or continuousaction spaces
▶ Computing the learned probability for every action can be expensive/unfeasible

▶ The solution: learn the parameters of a probability distribution, instead of theprobability of choosing each action
▶ Example: policy defined as the normal probability density

π(a|s, θ) = 1
σ(s, θ)

√
2π

exp
(
−(a − µ(s, θ)2)

2σ(s, θ)2

)

156

Example

CartPole with Actor-Critic in TensorFlow: https://www.tensorflow.org/
tutorials/reinforcement_learning/actor_critic?hl=en

157

https://www.tensorflow.org/tutorials/reinforcement_learning/actor_critic?hl=en
https://www.tensorflow.org/tutorials/reinforcement_learning/actor_critic?hl=en

Advanced Policy Methods

▶ Deterministic Policy Gradient (DPG): similar to PG theorem above, but fordeterministic policies
▶ Silver et al. (2014), “Deterministic Policy Gradient Algorithm”,

http://proceedings.mlr.press/v32/silver14.pdf
▶ Deep Deterministic Policy Gradient (DDPG): DPG with DNNs

▶ Lillicrap et al. (2016), “Continuous control with deep reinforcement learning”,
https://arxiv.org/abs/1509.02971

▶ Proximal Policy Optimization (PPO): state-of-the-art algorithm
▶ Schulman et al. (2017), “Proximal Policy Optimization Algorithms”,

https://arxiv.org/pdf/1707.06347.pdf

158

http://proceedings.mlr.press/v32/silver14.pdf
https://arxiv.org/abs/1509.02971
https://arxiv.org/pdf/1707.06347.pdf

Improved DQN Approaches

▶ Rainbow: combining several extensions of DQN
▶ Hessel et al. (2017), “Rainbow: Combining Improvements in Deep ReinforcementLearning.", https://arxiv.org/pdf/1710.02298

159

https://arxiv.org/pdf/1710.02298

Advanced RL Topics

▶ Multi-agent RL
▶ Hierarchical RL
▶ RL + Heuristic Tree Search
▶ Transfer RL
▶ . . .

160

References I

Kephart, J.O. and D.M. Chess (2003). “The Vision of Autonomic Computing”. In:
IEEE Computer 36.1, pp. 41–50. DOI: 10.1109/MC.2003.1160055.Russo Russo, G. et al. (2021). “MEAD: Model-Based Vertical Auto-Scaling forData Stream Processing”. In: Proceedings of 21th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, CCGRID ’21, Virtual Event,
May 10-13, 2021, pp. 314–323. DOI: 10.1109/CCGrid51090.2021.00041.Watkins, Christopher J. C. H. and Peter Dayan (1992). “Technical NoteQ-Learning”. In:Mach. Learn. 8, pp. 279–292.Weyns, D. (2020). An Introduction to Self-adaptive Systems: A Contemporary
Software Engineering Perspective. Hoboken, NJ, USA: Wiley-IEEE ComputerSociety Press.

https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/CCGrid51090.2021.00041

References II

Weyns, D. et al. (2013). “On Patterns for Decentralized Control in Self-AdaptiveSystems”. In: Software Engineering for Self-Adaptive Systems II. Vol. 7475. LNCS.Springer.

	References

